
Weighted nonlinear fit	
Created using Maple 14.01 Jake Bobowski	
<pre>> restart; with(StringTools) : with(Statistics) : with(plots) :</pre>	
<i>FormatTime</i> ("%m-%d-%Y, %H:%M"); "03-25-2015, 16:17"	(1)
In this example, Vr/Vo data from an <i>LRC</i> series circuit will be plotted as a function of angular frequence.	ency
This Maple input enters a list of the calculated ratio of Vr/Vo from measurements made in the lab. A enter the uncertainty in the voltage ratio. Both Vr and Vo have independent uncertainties. Have to propagation of errors to find $\Delta Vratio$.	
Vratio := [.0198, .067, .117, .185, .331, .450, .573, .689, .718, .714, .704, .670, .631, .549, .412, .318, .249, .186, .138];	,
$\sigma Vratio := [.001, .002, .003, .003, .005, .006, .007, .008, .008, .008, .008, .008, .008, .007, .006, .006, .004, .005, .003, .003];$	
Vratio := [0.0198, 0.067, 0.117, 0.185, 0.331, 0.450, 0.573, 0.689, 0.718, 0.714, 0.704, 0.670, 0.631, 0.549, 0.412, 0.318, 0.249, 0.186, 0.138]	
$\sigma Vratio := [0.001, 0.002, 0.003, 0.003, 0.005, 0.006, 0.007, 0.008, 0$	(2)
Calculate the weights for the fit $[(1/\Delta Vratio)^2]$.	
> <i>Yweights</i> := $\left[seq\left(\frac{1}{\sigma Vratio[i]^2}, i=1nops(\sigma Vratio)\right)\right];$	
$Yweights := [1. 10^{6}, 2.50000000 \ 10^{5}, 1.11111111 \ 10^{5}, 1.11111111 \ 10^{5}, 40000.00000,$	(3)
27777.77778, 20408.16327, 15625.000000, 15625.000000, 15625.00000, 15625.000000, 15625.000000, 15625.000000, 15625.000000, 15625.000000, 15625.00000000000000000000000000000000000	
$[15625.00000, 15625.00000, 20408.16327, 27777.77778, 62500.00000, 40000.00000, 1.111111111 10^5, 1.11111111 10^5]$	
Enter the frequency of the generator in Hz. I'm assuming that the fractional error in the frequency i much less than that of the voltage ratio. Calculate the angular frequency ω . > $f := [3000, 10000, 15000, 20000, 25000, 28000, 30000, 32000, 33000, 34000, 35000, 36000, 270000, 270000, 420000, 420000, 520000, 700000 h.$	S
37000, 39000, 43000, 47000, 52000, 60000, 70000];	
$ \begin{aligned} \omega data &\coloneqq evalf (2 \cdot \text{Pi} \cdot f); \\ f &\coloneqq [3000, 10000, 15000, 20000, 25000, 28000, 30000, 32000, 33000, 34000, 35000, 36000, \\ 37000, 39000, 43000, 47000, 52000, 60000, 70000] \end{aligned} $	
	(4)

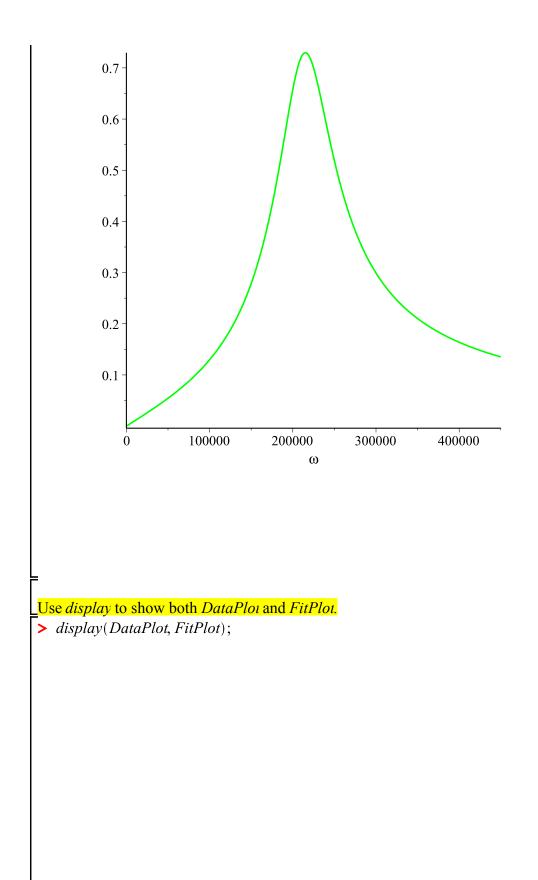
 $\omega data := [18849.55592, 62831.85308, 94247.77962, 1.256637062 \, 10^5, 1.570796327 \, 10^5, 1.759291886 \, 10^5, 1.884955592 \, 10^5, 2.010619298 \, 10^5, 2.073451152 \, 10^5, 2.136283004 \, 10^5, 2.199114858 \, 10^5, 2.261946710 \, 10^5, 2.324778564 \, 10^5, 2.450442270 \, 10^5, 2.701769682 \, 10^5, 2.953097094 \, 10^5, 3.267256360 \, 10^5, 3.769911184 \, 10^5, 4.398229716 \, 10^5]$

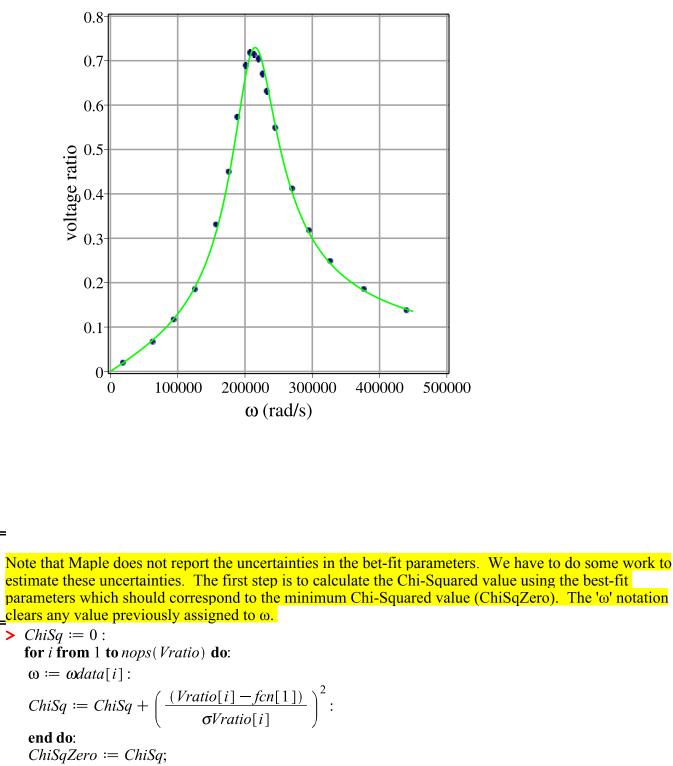
<mark>Now plot *Vratio* vs ω.</mark>

DataPlot := ScatterPlot(ωdata, Vratio, yerrors = σVratio, axes = boxed, view = [0.. 5e5, 0...0.8], labels = [typeset("ω (rad/s)"), typeset("voltage ratio")], labeldirections = ["horizontal", "vertical"], tickmarks = [7, 8], axesfont = [Times, 12], labelfont = [Times, 14], axis = [gridlines = [thickness = 1]], symbolsize = 10, symbol = solidcircle, thickness = 2) :

display(DataPlot);

Now, fit the data to a nonlinear function. We will use the Maple function NonlinearFit.


The format of the command below is *LinearFit*(fcn, x data, y data, variable, acceptable ranges of parameters, weights, output options). With the options selected, the output gives the fit function and the best fit parameters (A, g, and ωo).


(4)

>
$$fcn := NonlinearFit \left(\frac{A}{\left(1 + \frac{\omega^2}{g^2} \left(1 - \frac{\omega \omega^2}{\omega^2}\right)^2\right)^{\frac{1}{2}}}, \omega data, Vratio, \omega, parameterranges = [A = 0]{\left(1 + \frac{\omega^2}{g^2} \left(1 - \frac{\omega \omega^2}{\omega^2}\right)^2\right)^{\frac{1}{2}}} \right)^{\frac{1}{2}}$$

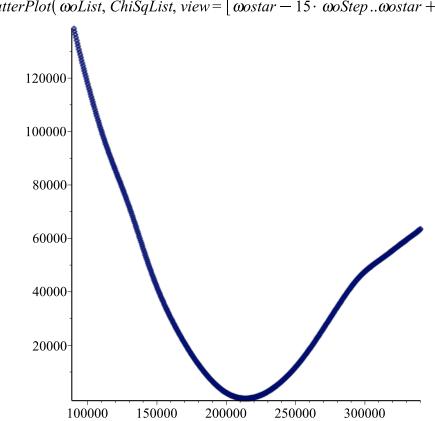
..2, $g = 0$..300000, $\omega \omega = 0$..500000], weights = Yweights, output = [leastsquaresfunction, parametervalues]);
fcn := $\left[\frac{0.729649817392542}{\sqrt{1 + 2.33105403776590 10^{-10} \omega^2} \left(1 - \frac{4.62834279414143 10^{10}}{\omega^2}\right)^2}, [A]$ (5)
= 0.729649817392542, $g = 65497.3651414017, \omega \omega = 2.15135836023231 10^5$]

Now plot the fit function defined by *fcn* over the entire frequency range. Give the plot the name *FitPlot*.

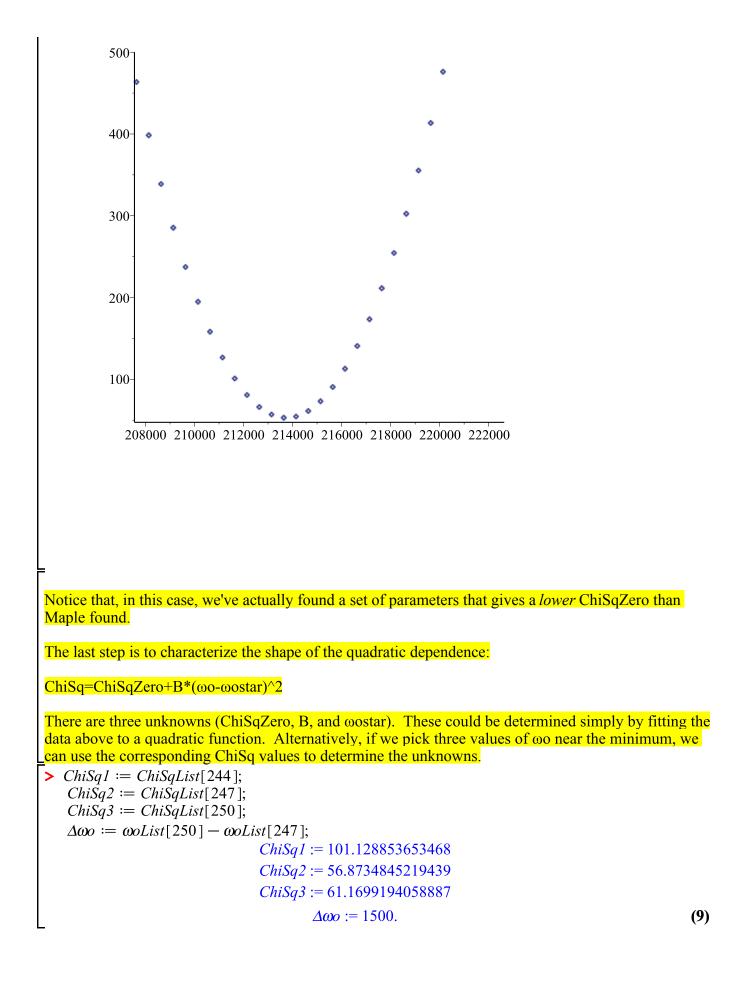
> $FitPlot := plot(fcn[1], \omega = 0..450000, colour = green) :$ display(FitPlot);

 $\omega := \omega'$

ChiSqZero := 73.2231847528438


(6)

The next step is to vary one of the parameters away from the value that minimizes ChiSq to see how ChiSq depends on the parameter value. We expect this variation to result in a quadratic dependence. As an example, we'll try finding the uncertainty in the resonance frequency ωo . Note, however, the same procedure can be applied to each of the parameters (A, g, ωo).


First, load the best-fit parameters determined from the fit into memory. > Astar := rhs(fcn[2, 1]);gstar := rhs(fcn[2, 2]); $\omega ostar := rhs(fcn[2,3]);$ *Astar* := 0.729649817392542 gstar := 65497.3651414017 $\omega ostar := 2.15135836023231 10^{\circ}$ (7) Next, pick a suitable step size by which to vary ωo . This may require some trial and error. Also, define the model function. > $\omega o := '\omega o'$: $\omega oStep := 5e2$: $y := \frac{Astar}{\left(1 + \frac{\omega^2}{gstar^2} \left(1 - \frac{\omega \sigma^2}{\omega^2}\right)^2\right)^{\frac{1}{2}}}$ $y := \frac{0.729649817392542}{\left(1 + 2.33105403776590 \ 10^{-10} \ \omega^2 \left(1 - \frac{\omega^2}{\omega^2}\right)^2\right)}$ (8) Now use nested loops to recaluated ChiSq at many values of ωo that bracket ωo star. > ChiSqList := NULL : $\omega_{oList} := NULL$: for ωo from $\omega ostar - 250 \cdot \omega oStep$ to $\omega ostar + 250 \cdot \omega oStep$ by $\omega oStep$ do; $\omega oList := \omega oList, \omega o;$ ChiSq := 0: for *i* from 1 to *nops*(*Vratio*) do: $\omega := \omega data[i]$: $ChiSq := ChiSq + \left(\frac{(Vratio[i] - y)}{\sigma Vratio[i]}\right)^{2}:$ end do: ChiSqList := ChiSqList, ChiSq; $\omega := \omega'$ end do: $\omega oList := [\omega oList]:$ ChiSqList := [ChiSqList]:Now plot the calculated ChiSq values as a function of the parameter ωo . Notice that, over a large range

of ω o, ChiSq is not strictly quadratic. However, if we zoom in close to the minimum the dependence is very close to quadratic.

> ScatterPlot(*woList*, ChiSqList);

 $ScatterPlot(\ \omega oList, \ ChiSqList, \ view = [\ \omega ostar - 15 \cdot \ \omega oStep .. \\ \omega ostar + 15 \cdot \ \omega oStep, \ 50 .. \\ 50]);$

The value of ω o that minimizes ChiSq (ω oMin) is given below as is the uncertainty in ω oMin which is determined by how quickly ChiSq increase as we move away from ω oMin. That is, $\sigma\omega$ o is determined by the B in the quadratic dependence of ChiSq on ω o. The larger the value of B, the lower the $\sigma\omega$ o.

>
$$\omega oMin := \omega oList[250] - \Delta \omega o \cdot \left(\frac{ChiSq3 - ChiSq2}{ChiSq1 - 2 \cdot ChiSq2 + ChiSq3} + \frac{1}{2}\right);$$

 $\sigma \omega o := evalf \left(\frac{\text{sqrt}(2) \cdot \Delta \omega o}{\text{sqrt}(ChiSq1 - 2 \cdot ChiSq2 + ChiSq3)}\right);$
 $ChiSqZeroFit := ChiSq3 - \frac{1}{\sigma \omega o^2} \cdot \left(\omega oList[250] - \omega oMin\right)^2;$
 $\omega oMin := 2.13753098374103 10^5$
 $\sigma \omega o := 304.441302317860$
 $ChiSqZeroFit := 52.7626269021716$ (10)

Finally, one would report the following for the experimental determination of ωo :

 $\omega = (2.138 + - 0.003) \times 10^{5} \text{ rad/s}$

In general, extracting uncertainties in the fit parameters from a nonlinear fit is nontrivial. Above we have given one method for obtaining an **estimate** of the uncertainties in the fit parameters. For more details about uncertainties for nonlinear fits, see **Data Reduction and Error Analysis** by Bevington and Robinson and/or **Numerical Recipes in C** which you can obtain and read for free by visiting http://www.nrbook.com/a/bookcpdf.php.